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Abstract

Real radar data has been analysed using the Fourier transform method and the type-III
Wigner distribution. The results show that whenever the target was detectable by the
Fourier transform method, the target was also detectable by the smoothed type-1II
Wigner distribution method. In the other trials, the target was not detectable by the
Fourier transform method but it was detectable by the smoothed type-HI Wigner
distribution method to varying degrees of success. Based on the analysis of real radar
data, we conclude that the smoothed type-IIl Wigner distribution provides a promising
method of detecting accelerating targets. However, more work needs to be done to find
an optimum smoothing method. It may turn out that different smoothing methods have
to be used depending on the acceleration and the closeness of the target to the clutter
region. Another important contribution of the present work is the use of the type-III
Wigner distribution rather than the type-I Wigner distribution which has been used by
many other researchers. When the type-I Wigner distribution is used, the range of
unambiguously measurable normalized velocities is 7. Moreover, targets that are 7
radians away from the clutter region in the spectral domain will be masked by the
clutter and cannot be detected. The type-1II Wigner distribution helps us to overcome
these problems. When the type-III Wigner distribution is used, the range of
unambiguously measurable normalized velocities is 27, and target that are 7 radians
away from the clutter region can be detected.
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Résumé

Des données radar réelles ont été analysées au moyen de la méthode de la transformée
de Fourier et de la distribution de Wigner de type-III. Les résultats montrent que,
lorsque la cible était détectable par la méthode de la transformée de Fourier, elle 1’était
aussi par la méthode de distribution de Wigner de type-III lissée. Dans les autres essais,
la cible n’éétait pas détectable par la méthode de la transformeée de Fourier, mais elle
I’était par la méthode de distribution de Wigner de type-III lissée avec divers degrés de
succes. L'analyse des données radar réelles permet de conclure que la distribution de
Wigner de type-1II lissée constitue une méthode prometteuse de détection des cibles en
accélération. If faudra cependant mener d’autres travaux pour trouver une méthode de
lissage optimale. 11 se peut qu’il faille utiliser différentes méthodes de lissage selon
I"accélération de la cible et sa proximité de la région de clutter. Une autre contribution
importante des travaux en cours est I'utilisation de la distribution de Wigner de type-III
de préférence a la distribution de Wigner de type-1, dont de nombreux autres chercheurs
se sont servi. Lorsque la distribution de Wigner de type-I est utilisée, la fourchette des
vitesses normalisées mesurables non ambigués est 7. En outre, les cibles a 7 radians de
larégion de clutter dans le domaine spectral seront masquées par le clutter, d’ot
impossibilité de les détecter. La distribution de Wigner de type-1II permet de surmonter
ces problemes. Lorsque la distribution de Wigner de type-III est utilisée, 1a fourchette
des vitesses normalisées mesurables non ambigués est 27, et les cibles A 7 radians de la
région de clutter peuvent étre détectées.
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Executive summary

Ore of the central problems in High Frequency (HF) radar data is the analysis of a time
series. The Fourier transform method, or Doppler processing method, has been
generally used in HF radar to detect targets that are moving with constant radial
acceleration. Examples of accelerating targets are manoeuvring aircrafts and missiles.
Thayaparan and Yasotharan [1] show that there are limitations and shortcomings in the
Fourier transform method to detect accelerating targets because of the phenomenon
known as Doppler smearing. They show that when the target is constantly accelerating,
the Fourier method may still be used to detect the target and estimate its median
velocity, provided the acceleration is small enough in the sense to be described in this
report. It is shown that for a given acceleration, the number of pulses cannot be
increased indefinitely without resulting in catastrophic failure of the method.
Conversely, for a given number of pulses, the acceleration cannot be arbitrarily large
without resulting in catastrophic failure of the method. Thus the number of pulses and
the acceleration have to be matched to achieve optimum performance [1].

Consequently, for the interpretation of radar data in terms of a changing frequency
content, we need a representation of our data as a function of both time and frequency.
The purpose of this report is therefore to stress the importance of alternative methods
which have received little attention in the past, namely, the joint time-frequency
representation of signals. In this report, we choose the Wigner distribution, together
with a ambiguity function, as the basic tools, since both possess some important
properties which make them very attractive for time-frequency signal analysis [2].

Real HF radar data has been analysed using the Fourier transform method and the
type-III Wigner distribution. The results show that whenever the target was detectable
by the Fourier transform method, the target was detectable also by the smoothed
type-III Wigner distribution method. In the other trials the target was not detectable by
the Fourier transform method but the target was detectable by the smoothed type-III
Wigner distribution method to varying degrees of success. Based on the analysis of real
radar data, we conclude that the smoothed type-IIl Wigner distribution provides a
promising method of detecting accelerating targets. However, more work has to be
done to find an optimum smoothing method. It may turn out that different smoothing
methods have to be used depending on the acceleration and the closeness of the target
to the clutter region. Another important contribution of the present work is the use of
the type-TIT Wigner distribution rather than the type-I Wigner distribution which has
been used by many other researchers. When the type-I Wigner distribution is used, the
range of unambiguously measurable normalized velocities is 7. Moreover, targets that
are  radians away from the clutter region in the spectral domain be masked by the
clutter and cannot be detected. The type-III Wigner distribution helps us to overcome
these problems. When the type-1II Wigner distribution is used, the range of
unambiguously measurable normalized velocities is 27r, and target that are 7 radians
away from the clutter region can be detected.
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Sommaire

Un des principaux problémes éprouvé avec les données de radar haute fréquence (HF)
est ’analyse d’une série chronologique. La méthode 4 transformée de Fourier, ou la
méthode de traitement Doppler, a généralement été utilisée dans le radar HF pour la
détection des cibles & accélération radiale constante. Les cibles présentant une
accélération sont, par exemple, les aéronefs qui effectuent des manuvres et les missiles.
Thayaparan et Yasotharan [1] montrent que la méthode  transformée de Fourier
comporte des limites et des lacunes pour la détection des cibles a accélération, en raison
du phénomene appelé la persistance Doppler. Ils montrent que dans le cas d’une cible a
accélération constante, la méthode de Fourier peut encore étre appliquée pour détecter
la cible et estimer sa vitesse médiane, a condition que 1’accélération soit assez faible
dans le contexte du présent rapport. On montre que pour une accélération donnée, le
nombre d’impulsions ne peut pas étre augmenté indéfiniment sans qu’il en résulte un
échec catastrophique de la méthode. Inversement, pour un nombre donné d’impulsions,
I’accélération ne peut pas augmenter arbitrairement sans qu’il en résulte aussi un échec
catastrophique de la méthode. Ainsi, le nombre d’impulsions et 1’accélération doivent
étre adaptés pour permettre des performances optimales [1].

Par conséquent, pour interpréter les données radar du point de vue d’un contenu en
fréquences variable, nous devons les représenter aussi bien en fonction du temps qu’en
fonction de 1a fréquence. L objet du présent rapport est donc de souligner I'importance
des méthodes de rechange auxquelles on a accordé peu d’attention par le passé,
notamment la représentation temps-fréquence combinée des signaux. Dans le rapport,
nous choisissons la distribution de Wigner avec une fonction d’ambiguité comme outil
de base, étant donné que ces deux éléments offrent certaines propriétés importantes qui
présentent un grand intérét pour I’analyse temps-fréquence des signauxa[2].

Des données radar HF réelles ont été analysées au moyen de la méthode de la
transformée de Fourier et de la distribution de Wigner de type-IIL. Les résultats
montrent que, lorsque la cible était détectable par la méthode de la transformée de
Fourier, elle I’était aussi par la méthode de distribution de Wigner de type-III lissée.
Lors des autres essais, la cible n’était pas détectable par la méthode de la transformée
de Fourier, mais elle 1’était par la méthode de distribution de Wigner de type-III lissée
avec divers degrés de succes. L’analyse des données radar réelles permet de conclure
que la distribution de Wigner de type-III lissée constitue une méthode prometteuse de
détection des cibles en accélération. Il faudra cependant mener d’autres travaux pour
trouver une méthode de lissage optimale. Il se peut qu’il faille utiliser différentes
méthodes de lissage selon 1’accélération de la cible et sa proximit€ de la région de
clutter. Une autre contribution importante des travaux en cours est I'utilisation de la
distribution de Wigner de type-III de préférence a la distribution de Wigner de type-I,
dont de nombreux autres chercheurs se sont servi. Lorsque la distribution de Wigner de
type-I est utilisée, la fourchette des vitesses normalisées mesurables non ambigués est
«. En outre, les cibles a 7 radians de la région de clutter dans le domaine spectral
seront masquées par le clutter, d’o impossibilité de les détecter. La distribution de
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Wigner de type-III permet de surmonter ces problémes. Lorsque la distribution de
Wigner de type-IIT est utilisée, la fourchette des vitesses normalisées mesurables non
ambigués est 2, et les cibles a 7 radians de 1a région de clutter peuvent étre détectées.

T. Thayaparan, A. Yasotharan. 2002. Application de la distribution de Wigner pour la
détection d’aéronefs a basse altitude en accélération dotés de radar 2 ondes de surface HF.
DREO TR 2002-033. Centre de Recherches pour la Défense Ottawa.
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Introduction

The Fourier Transform is at the heart of a wide range of techniques that are used in HF
radar data analysis and processing. Mapping the data into the temporal frequency
domain is an effective way of recording the data such that their global characteristics
can be assessed. However, the change of frequency content with time is one of the main
features we observe in HF radar data. Because of this change of frequency content with
time, radar signals belong to the class of non-stationary signals.

One of the central problems in High Frequency radar data is the analysis of a time
series. The Fourier transform method, or Doppler processing method, has been
generally used in HF radar to detect targets that are moving with constant radial
acceleration. Examples of accelerating targets are manoeuvring aircraft and missiles.
Thayaparan and Yasotharan [1] show that there are limitations and shortcomings in the
Fourier transform method to detect accelerating targets because of the phenomenon
known as Doppler smearing. They show that when the target is constantly accelerating,
the Fourier method may still be used to detect the target and estimate its median
velocity, provided the acceleration is small enough in the sense to be described in the
paper. It is shown that for a given acceleration, the number of pulses cannot be
increased indefinitely without resulting in catastrophic failure of the method.
Conversely, for a given number of pulses, the acceleration cannot be arbitrarily large
without resulting in catastrophic failure of the method. Thus the number of pulses and
the acceleration have to be matched to achieve optimum performance [1].

Consequently, for the interpretation of radar data in terms of a changing frequency
content, we need a representation of our data as a function of both time and frequency.
The purpose of this paper is therefore to stress the importance of alternative methods
which have had little attention in the past, namely, the joint time-frequency
representation of signals. In this report, we use the new discrete-time Wigner
time-frequency distribution. This distribution was independently derived by the authors
Thayananthan and Yasotharan [3]. But it had already been derived by Chan [4] in an
effort to solve the problem of aliasing. Nevertheless, the optimality properties of this
discrete-time Wigner distribution for signal detection were not observed in [4].
Therefore, in the context of signal detection, this discrete-time Wigner distribution
seems new.
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Signal Model

2.1

In this study, the radar is assumed to be of the Pulse Doppler type, that is, it sends out a
uniform train of RF pulses and phase-coherently receives their returns. It is also
assumes that the receiver has pulse compression capability so that a pulse return from
an isolated target can be represented by a single sample of the compressed pulse.

Single-Target Scenario

Suppose the radar sends out N pulses, one every T seconds, and there is a target
moving with constant radial acceleration. Assume that the range walk is negligible, that
is, the change in range during the observation period of NT seconds is negligible
compared to the radar range resolution as determined by the width of the compressed
pulse. Then the samples of the N range-compressed pulses taken at the range of the
target have the form

(1) r(n) = s(n) +v(n), forn=0,1,2,3,...,(N —1),
where
2) 8(n) = qedbotbint3ban?)

is the noise-free signal, and v(n) is a sequence of independently and identically
distributed (iid) samples of complex Gaussian noise with mean zero and variance o2.

The signal parameters a and by are the target amplitude and phase respectively. The
signal parameters b; and by are the normalized initial radial velocity and the normalized
radial acceleration respectively.

21.1 Normalized Initial Velocity and Acceleration

The normalized initial radial velocity is defined as

where u is the initial radial velocity in meters/sec, T is pulse repetition
interval in secs, and ) is the carrier wavelength in meters. Similarly, the
normalized radial acceleration is defined as
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@ n=1 ()

where f is the radial acceleration in meters/sec/sec towards the radar. It can be
seen that both of the above normalized quantities are non-dimensional.

To obtain these relations note that the increment in range d, measured from
the beginning of the observation interval, as a function of continuous-time ¢, is
d(t) = ut + 1 ft?, and therefore the phase increment of a pulse as a function
of discrete-time, or pulse index, is given by

2d(nT)\ _ 4« 1. om0
&) 27r( i )— X (unT+2fnT),
_ (4aT 1, [4nT?\
(6) —u(—)‘ )n+§f( 5 )n

In the rest of the discussion, the term velocity and acceleration refer to
normalized radial velocity and normalized radial acceleration
respectively. '

2.1.2 Per-Pulse Signal-to-Noise Ratio

The Per-Pulse Signal-to-Noise Ratio is defined as

™ SNRpuse = (2)

The performance measures of any detection method will depend on SNRpuise
and the number of pulses N. The values of the signal parameters b; and by
may also influence performance. We are interested in detection methods
whose performance will increase as N increases regardless of the values of b
and bg.

2.2 Multiple-Target Scenario - Targets Separated in Range

When there are multiple targets, as long as they are separated from one another in range
by at least the radar range resolution as determined by the width of the compressed
pulse, a model of the above form will be valid for each of them.

Thus, if there are two targets separated in range, the samples of the N
range-compressed pulses taken at the corresponding ranges of the targets have the form
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®)  ri(n)= s1(n) +vi(n), and
) r2(n) = s3(n) +va(n) forn=0,1,2,3,...,(N - 1),

where s1(n) and s3(n) are the noise-free signals, and v1(n) and v(n) are sequences of
independently and identically distributed samples of complex Gaussian noise with
mean zero and variance o2.

Because of the independence of v1(n) and v2(n), the model decouples into two single
target models.

Multiple-Target Scenario - Targets Coincident in Range

When there are multiple targets coincident in range, the samples of the N
range-compressed pulses taken at the range of the targets have the form

(10) r(n) = s(n) +v(n), forn=20,1,2,3,...,(N - 1),

where $(n) is the combined noise-free signal due to all targets and v(n) is a sequence
of independently and identically distributed samples of complex Gaussian noise with
mean zero and variance o2, If there are K targets, the combined noise-free signal has
the form

K
(l 1) S(n) = Zakej(b"'°+b":‘"+%b"r2"2),
k=1

where ay and by, g are the amplitude and phase respectively of the kth target, and by, ;
and by, 5 are the normalized initial radial velocity and the normalized radial acceleration
respectively of the kth target.
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A Wigner Distribution Formulation for a
Discrete-Time Chirp Signal

3.1

DREO TR 2002-033

It is nearly 20 years ago that the Wigner distribution (also known as Wigner-Ville
distribution) was given a prominent place in the signal processing community’s
spectrum of research interests. Recognition was given almost immediately for the
potential of the Wigner distribution as a tool for displaying and analyzing signal
characteristics in the time-frequency plane. This assessment was soundly supported by
the long list of desirable mathematical properties, such as correct marginal and support
properties, satisfied by the Wigner distribution. Unlike the spectrogram, for instance,
the resolution of the Wigner distribution is not limited by the temporal or spectral
properties of a window, since a window is not required in the definition of the Wigner
distribution [3,5].

On the other hand, due to its high resolution and its quadratic nature, the Wigner
distribution locally exhibits oscillations between positive and negative values to an
extent that smoothing, in a certain sense in accordance with the Heisenberg uncertainty
principle, is necessary to make it non-negative everywhere [6]. As a consequence, a
pointwise interpretation of the Wigner distribution as a true probability density function
is not possible. This circumstance has kept the discussions in the signal processing
community quite animated, yielding all sorts of modified Wigner distributions through
the design of smoothing kernels and distributions involving the signals in a
non-quadratic way. Thus, to a large extent, the interest and research effort of the
community has been directed at redefining and re-interpreting the Wigner distribution,
with the purpose of obtaining a clear and useful display and analysis tool.

Besides being a useful display and analysis tool, the Wigner distribution can be a great
help in the design of time-frequency filtering methods. In this section and the following
sections, we develop such methods for the detection of aircraft from the noisy signals.
The Wigner distribution was originally defined for continuous-time signals. A
discrete-time version of it was proposed recently. Unfortunately, this discrete-time
Wigner distribution suffers from aliasing effects, which prevent several of the properties
of the continuous-time Wigner distribution from carrying over straightforwardly. In this
report, a discrete-time Wigner distribution which does not suffer from aliasing is
introduced. It is essentially an augmentation of the previous version, incorporating new
information about the signal not contained in the previous version.

Three Definitions of Wigner Distribution for Discrete-Time
Signals
Given a discrete-time signal 7(n), we consider three definitions of auto time-frequency

distributions which have some properties analogous to those of the classical Wigner
distribution defined for continuous-time signals [7].




It is straightforward to verify that these are real-valued functions.

3.1.1

3.1.2

Type-1 Wigner Distribution

The type-1 Wigner distribution W (n, 8) is defined as

(12) W/(n,8) =" r(n+k)yr*(n— k)e 9,
k

where n is integer-valued and 6 is real-valued. Note that this is the same as the
definition provided in [7] except for the missing scaling factor 2 at the front.

Itis easy to verify that the type-I Wigner distribution is a periodic function of 8
with period . This property are discussed more in the following subsections.

For a signal r(n) that is zero outside 0 < n < (N — 1), the type-I Wigner
distribution is zero outside 0 < n < (N —1).

Type-ll Wigner Distribution

The type-II Wigner distribution W} (n, ) is defined as

(13) Wi (n,0) =3 r(n+k+ 1)r*(n - k)eI2k+D6,
k

where n is integer-valued and 4 is real-valued.

It is straight forward to verify that the type-1I Wigner distribution is a periodic
function of 8 with period 2. It is also straight forward to verify that

(14) W (0,6 +m) = —W(n,0).
These properties are discussed more in the following subsections.

For a signal (n) that is zero outside 0 < n < (N — 1), the type-II Wigner
distribution is zero outside 0 < n < (N —2).
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3.1.3 Type-lll Wigner Distribution

The type-III Wigner distribution W} (n, 6) is defined in terms of the type-I
and type-II Wigner distributions as follows.

Wi(n/2,6) foreven n
111 — T ’ ’
(15) W (n,0) = { WH((n—1)/2,8) forodd n.

It is straight forward to verify that the type-IIl Wigner distribution is a
periodic function of  with period 2x. This property is discussed more in the
following subsections.

For a signal r(m) that is zero outside 0 < m < (N — 1), the the type-TI
Wigner distribution is zero outside 0 < n < 2(N — 1). However, if we
consider even n to correspond to integer values of time and odd n to
correspond to half-integer values of time then the type-IIIl Wigner distribution
is zero outside the time range 0 < m < (N —1).

3.2 The Range of Unambiguously Measurable Velocities of the
Type-l and Type-Ill Wigner Distribution Based Methods

As shown in Section 3.1.1, the period of the type-I Wigner distribution is 7. Therefore

the signals
(16) aellbohint3ban®) 5pg
a7 ae?'(go+(b1+1r)n+%bzn2),

gives rise to the same type-I Wigner distribution. In otherwords, if we detect, using the
type-I1 Wigner distribution, the presence of a signal in the time-frequency plane with
intercept and slope parameters ¢; and ca respectively, then we cannot resolve the
ambiguity as to whether the physical signal was

(18) aél (C°+"1"’+%°2"2), or

(19) aef(cotHertmntzen?)
without external information.

In contrast, as shown in Section 3.1.3, the period of the type-IIT Wigner distribution is
2. Therefore the signals
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3.3

(20) aedbotbint3bn?) 444
2D aei(io+(bx+7r)ﬂ+%bzﬂ2),
give rise to different type-III Wigner distributions.

If we detect, using the type-III Wigner distribution, the presence of a signal in the
time-frequency plane with intercept and slope parameters ¢; and c; respectively, then
there is no ambiguity as to whether the physical signal was

(22) aeflcotamntzom?) o
(23) aed(cot{cr+mint 3 ean?) )

However we need external information to resolve the ambiguity as to whether the
physical signal was

24) aeilcotantien?) o

(25) agl(cot(rtamntzen?)

The Wigner Distributions of the Discrete-Time Chirp Signal
In this sub-section we derive the type-1, type-II, and type-IIl Wigner distributions for

the discrete-time chirp signal

(26) s(n) = ae?Gottintaben’) g0 g1 . (N-1),

defined in Section 2. These derivations have been done in Appendix A assuming ¢ = 1.
The results stated here are obtained by scaling those derived in the appendix by a2.
Note that the Wigner distributions do not depend on by.

3.3.1  The Type-l Wigner Distribution of s(n)

The Type-1 Wigner Distribution W/ (n, 8) of s(n) is given by

Wi 0) — o 2'min(n,N—1—-n)+1 if@ = b + ban mod m,
s (n’ ) =a Mo_(bl+:x?r:fg)—(?br1n—:-nb(;z§\],-l_n)+l)] otherwise.

27
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for 0 < n < (N — 1), and it is zero outside this range.

In a 3-dimensional plot [3], it has a ridge along the lines given by

(28) 0 = by + ben mod 7.

The height of the ridge is given by

(29) 2min(n, N —1—n)+1.

3.3.2 The Type-ll Wigner distribution of s(n)

The Type-1I Wigner Distribution W (n, 8) of s(n) is given by

2min(n, N —2—n) +2 if @ = by + 3b2 + ban mod 2,
W (n,8) = a? ~(2min(n, N —2 —n)+2) if @ =7 + by + 102 + bon mod 2,
s sin|(8—(b1+1by +b2n) )(2 min(n,N —2—n)+2)]

sin[0—(b1+ bz +b2m)] otherwise.

(30)
for 0 < n < (N — 2), and it is zero outside this range.

In a 3-dimensional plot [3], it has a ridge along the lines given by

3D 6="5b +%b2+bgn mod 2x.

The height of the ridge is given by

(32) 2min(n, N —2 —n) + 2.

In a 3-dimensional plot, it also has a valley along the lines given by
(33) 0:7r+b1+%b2+b2nmod7r.

The depth of the valley is given by

(34) 2min(n, N —2 —n) + 2.
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3.3.3 The Type-lil Wigner distribution of s(n)

The Type-IIT Wigner Distribution W] (n,8) of s(n) is given by

2min(3,N-1-2)+1 if 8 = by + 1byn mod 27,
WH(n, g) = g2 ()" [2min(3, N -1-2)+1]  if=n+b + 1byn mod 2,
s sin[(0—(b1+3bon))(2min(3,N-1-2)+1)]
sin|6—(b1+3bom)]

otherwise.
(35)

for 0 < n < 2(N — 1), and it is zero outside this range.

In a 3-dimensional plot [3], it has a ridge along the lines given by
1

(36) 0=0b + §b2n mod 27.

The height of the ridge is given by

37 min(n,2(N —1) —n) + 1.

In a 3-dimensional plot, it also has an oscillatory structure along the lines give

by
1
(38) O=m+b + §b2n mod 27.
The period of the oscillation is one unit and the amplitude of the oscillation is
given by
(39) min(n,2(N —1) —n) + 1.
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An Ambiguity Function Formulation for a
Discrete-Time Chirp Signal

4.1

The inverse Fourier transform of the Wigner distribution is called the ambiguity
function (AF). The Fourier transform maps the Wigner distribution auto-components to
a region centered on the region of the AF plane, whereas it maps the oscillatory Wigner
distribution cross-components away from the origin [8].

The fact that the auto- and cross-components are spatially separated in the AF domain
means that if we apply mask function to the AF, we can suppress some of the
cross-components. This masking operation defines a new time-frequency
representation (TFR)

(40) TFR = Fourier transform{AF - Kernel}

with properties different from the Wigner distribution. The mask function is called the
‘kernel’ of the TFR. Since there are many possible 2-dimensional kernel functions,
there exist many different TFRs for the same signal. The class of all TFRs obtained in
this fashion is called Cohen’s class. A more detailed description of the ambiguity
function is given [8].

Three Definitions of Ambiguity Function for Discrete-Time
Signals
Given a discrete-time signal 7(n), we consider three definitions of ambiguity function

which are related, via a two-dimensional Fourier transformation, to the three definitions
of Wigner distribution given in Section 3.1.

411 Type-l Ambiguity Function

The type-I ambiguity function AX(k, ) is defined as

41) Al(k,a) = Zr(m + k)r*(m — k)ei?™e,

where k is integer-valued and « is real-valued.

For a signal r(n) that is zero outside 0 < n < (N — 1), the type-I ambiguity
function is zero outside —floor (%) < k < floor (-A%)
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41.2

413

4.1.4

Type-ll Ambiguity Function

The type-II ambiguity function AL (k, o) is defined as

(42) Al (k,0) =Y " r(m + k + 1)r*(m — K)CmHDe

m

where k is integer-valued and « is real-valued.

For a signal r(n) that is zero outside 0 < n < (N — 1), the type-II ambiguity
function is zero outside —floor (%) < k < floor (52;2)

Type-lll Ambiguity Function

The type-IIT ambiguity function AZ!1(k, o) is defined in terms of the type-I
and type-II ambiguity functions as follows.

1 v
43) Af”(k,a)={ 171(?(/13’—02)/2@) forodd &

For a signal 7(n) that is zero outside 0 < n < (N — 1), the type-IIl ambiguity
function is zero outside —(N — 1) < k < (N — 1).

Cross Ambiguity Functions Between Two Discrete-Time Signals

Given discrete-time signals 2(n) and y(n), we can define cross ambiguity
functions as straightforward extensions of the definitions given above. Thus

(44) Ai,y(k, a) = Zaz(m + k)y* (m — k)e?me,
(45) AL (k,0) = 3 a(m + k + 1)y* (m — K)eiemtDe,

AL (k/2,a) foreven k,

(46) Alll(k,0) = {
v®.) = a6 1)2,0) forodd k.

4.2 The Ambiguity Functions of a Discrete-Time Chirp Signal

In this sub-section we derive the type-I, type-II, and type-III ambiguity functions of the
discrete-time chirp signal

12
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[ gtintabn?) g <n < (N - 1)
“n s(n) = { 0 otherwise.

4.2.1 Type-| Ambiguity Function

Recall that the type-I ambiguity function AZ(k, o) is defined as

(48) Al(k,a) = s(m+k)s*(m — k)™,

m
where k is integer-valued and « is real-valued.
It is straight forward to see that the signal product term s(m + k)s*(m — k) is
zero outside the ranges —floor (252) < k < floor (1) and
max(k,—k) <m < N —1 — max(k, —k).

Thus, for —floor (852) < k < floor (¥51), we have

N—1-max(k,—k)
(49) Al(k,a) =€k N JAnkem

m=max(k,—k)

which is a sum of a geometric series that can be evaluated as

eIk (N — 2max(k, —k)) if bok + o= 0 mod m,

I fg . . 3
Ay (k, ) —{ 1k gil(bak+a)(N-1)] (“m[(ws?ﬁf&}i’anﬁx(k’_k»]) otherwise.
(50)

4.2.2 Type-ll Ambiguity Function

Recall that the type-II ambiguity function AZf(k, ) is defined as

5D All(k,0) = 3 s(m + & +1)s*(m — k)ef@m+De,

m

where k is integer-valued and « is real-valued.
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It can be seen that the signal product term s(m + k + 1)s*(m — k) is zero
outside the ranges —floor %) < k < floor (%) and
max(k, —(k + 1)) <m < N — 2 — max(k, —(k + 1)).

Thus, for —floor (§) < & < floor (%52), we have

N —-2-max(k,~(k+1))
(52) Al (k, @) = eFbr+3m)(2k+1) gl ) e2(ba(kt ) ram,
m=max(k,—(k+1))

which is a sum of a geometric series that can be evaluated as

dmw%KN_1_2mu@f%k+n»ﬁ@@+%)+a=OmM2m

AgI(k a) = % 1y 4 1 i [(bz k+1 1 -
’ (k42) oil(b2(k+2)+a)(N-1)] [ 8in (k+3)+a)(N—1-2 max(k, (k—!—l)))] y
el T3 )ed 2 sin(b2 (- D)) otherwis

(33)

4.2.3 Type-lll Ambiguity Function

Recall that the type-III ambiguity function AXf!(k, @) is defined in terms of
the type-I and type-II ambiguity functions as

Al(k/2,a) foreven k,

III —
(54) A, (k,a)-{ All((k—1)/2,0) forodd k.

Thus for —-(N —1) <k < (N - 1),

eME(N — max(k, —k)) if 150k + a = 0 mod 2n

A (k) = bl _ in[(1bok+a)(N—max(k,—k )
s (ko) eid1k il(Fb2k+a)(N-1)] (” [(2bzsi’;ﬁ)%(b2k+o‘3’i( MY otherwise.
(55)

4.3 The Cross Ambiguity Functions of Two Discrete-Time Chirp
Signals

In this sub-section we derive the type-1, type-II, and type-III cross ambiguity functions
of the discrete-time chirp signals
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(56)

(57

4.3.1

2(n) = { ej(a1n+%azn2) fo<n< (N—1)

0

v ={ ¢

otherwise.

Type-1 Cross Ambiguity Function

efbint3bn?) if g < < (N —1)
otherwise.

Recall that the type-I cross ambiguity function Ai,y(k, a) is defined as

(58) AL (k,0@) =) z(m+ k)y*(m — k)™,

where k is integer-valued and « is real-valued.

It is straight forward to see that the signal product term z(m + k)y*(m — k) is
zero outside the ranges —floor (—%’—1) < k < floor (#) and
max(k, —k) <m < N — 1 — max(k,—k).

Defining

59 a1 +b = ¢,
(60) az +be = o3,
(61) a; — by = dy,
(62) az — by = da,
we can show

(63) AL (k, ) = eflcrk+adak?)

N—1-max(k,—k)

>

m=max(k,—k)

for —floor (¥51) < k < floor (%)

el ((d1+c2 k+2a)m+%d2m2) )

Special Case d, =0
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e ¥ (N — 2max(k, —k)) if dy + c2k + 20 = 0 mod ,

Aiy(k, a)= eierk gild (@1 +eak+2a)(N-1)] [ 5in[}(d1+eak+20) (N-2 max(k,—k))]

sin [% (dr+c2 k+2a)]
(64

Thus l .y (ks a)| is concentrated along the line d; + ¢k + 2o = 0 and
symmetrically spread about it with respect to a. For a fixed k, the amount of
spread with respect to « can be measured by 1/(N — 2 max(k, —k)).

The General Case

16

4.3.2

Although it seems difficult to evaluate Aé,y(k, a) in the general case, by
writing

y(k a) Clk+ dzkz)ej((d1+ dz(N l)+¢:2k+2a)( ))
N—1-max(k,—k)

) eJ'((dﬁda(¥)+czk+2a>)(m-(%))+%dz(m—(l"-{—’))2),
m=max(k,—k)

(65)

we can see that ]A (k a)| is symmetrically spread about the line

d; +d, ( 1) + czk + 2a = 0 with respect to a. For small ds, l (3 a)|
is concentrated along the same line. For a fixed &, the amount of spread with
respect to o will depend on both (N — 2 max(k, —k)) and ds.

Type-ll Cross Ambiguity Function

Recall that the type-II cross ambiguity function AZZ (k, a) is defined as

(66) A;Ip{y(k, a)= Z z(m+k+ 1)y*(m — k)ej(zmﬂ)“,

m

where k is integer-valued and « is real-valued.

It is straight forward to see that the signal product term
z(m + k + 1)y*(m — k) is zero outside the ranges
—floor (¥) < k < floor (¥52) and

max(k, —(k + 1)) <m < N — 2 — max(k, —(k + 1)).
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Defining

(67) a; + b1 = O,
(68) a2 + b2 = ¢,
(69) a; —b = dj,
(70) az —ba = dy,
we can show

N—2—max(k,—(k+1))
Aify(k', a) = e (k+3)H3dz(k+3)%) Z ej((d1+c2(k+%)+2a)(m+%)+%dz(m+%)2),

m=max(k,— (k+1))
(71)

for —floor (¥) < & < floor (%52).

Special Case dp =0

e (k+3) (N — 1 — 2max(k, —(k + 1)) if di + ea(k + 1) + 2 = 0 mod ,

I _ jer (k+1) F[ (datea(k+1)+2a)(N-1)] sin[l(d1+c2(k+l)+2a)(N—1-2ma.x(k,—(k+1)))]
Azy(k, ) gfabaleily(htalkiy)+ie : sin b (@1 Fea (k1) 120)]
otherwise.
(72)

Thus | AZL (k, )| is concentrated along the line dy + e2(k + 3) +2a = O and

symmetrically spread about it with respect to . For a fixed k, the amount of

spread with respect to « can be measured by
1/(N —1—2max(k,—(k +1))).

The General Case

Although it seems difficult to evaluate AZ! (k, ) in the general case, by
writing

11 (k, 0) = ferktiH3dak ) o (3 (M52 ) halkt ) +20) (557))

N—2—max(k,—(k+1))
S (@S2 rer(i ) 200) (m=(252)) +3a(m=(252))7).

m=max(k,—(k+1))
(73)
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we can see that |A£fy(k, a)l is symmetrically spread about the line

d) +dy (kl) + c2(k + 2) + 2a = 0 with respect to o.. For small dj,
|A£,Iy(k, a)1 is concentrated along the same line. For a fixed k, the amount of
spread with respect to a will depend on both (N — 1 — 2max(k, —(k + 1)))
and dz.

43.3 Type-lll Cross Ambiguity Function

Recall that the type-1II cross ambiguity function A2/ (k, ) is defined in

terms of the type-I and type-II cross ambiguity functions as

ALl (k/2,a) foreven k,

III —
(74) Az,,,(k,a)—{ Agfz((k—l)/za) forodd k.

By writing

A (g o) = eiler(B)+3a(5))ei(d+5d (557 Jrea(§)+20) (252))
—di= k’_ . — ~1—max(k,— —l-—max(k,— 2
N—1—max( k)eJ((dﬁdq(%)ﬂz(%)”a»(m_(N_l_z_(z._ﬁ))+%d2( _(N_lT&__n)))

m=0

(75)

we can see that IAig (k, a)| is symmetrically spread about the line

di + dy (22) + c2(£) + 20 = 0 with respect to a. For small dy,
| ALl (k, )| is concentrated along the same line. For a fixed k, the amount of
spread with respect to & will depend on both (N — max(k, —k)) and dp.

The Special Case dy =0

13N — max(k, —k)) if dy + c5(%) + 20 = 0 mod ,

Agj (k,a) = efer(5)eil3 (dr+ca(5)+2a)(N-1)] sin[} (d1-+ea(§)+2a) (N —max(k,—))] otherwise
sin[%(d1+c2(§)+2a)] :
(76)

Thus | A2 (k, a)| is concentrated along the line d; + ca(£) + 20 = 0and
symmetrically spread about it with respect to a. For a fixed k, the amount of
spread with respect to a can be measured by 1/(N — max(k, —k)).
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Detecting Targets in Clutter using Smoothed
Wigner Distributions

When the Wigner Distribution (WD) of a radar signal, collected by a pulse Doppler
High Frequency Surface Wave Radar during the known presence of a target, are
displayed, it is virtually impossible to ‘see’ the target as a distinct line in the
time-frequency plane. This was due to the fact that the strength of the background
against which the target had to be detected was much larger than the strength of the
target, and the sidelobes of the WD of the background and those of the interaction
between the background and the target were obscuring the target.

In general, the background against which targets must be detected by a radar will
constitute clutter and noise. In the case of High Frequency Surface Wave Radar
(HFSWR) used over the ocean, the clutter is due to Bragg scattering from the surface of
the ocean [9]. This clutter can be adequately modeled for our purposes by two targets
that are each moving with constant radial velocity. One target moves towards the radar
and the other moves away from the radar, with the magnitudes of radial velocities being
equal. These are called the approaching and receding Braggs. The real radar signal can
thus be modeled by three target signals - two of which represent the Braggs - plus noise.

Recall that the WD of a sum of two signals contains cross-terms due to the interaction
between the two signals [2]. In the case of two chirp signals, the cross-terms are of an
oscillatory nature and located midway between the lines along which the auto-terms are
concentrated. The strength of the cross-terms is proportional to the square root of the
product of the strengths of the auto terms.

Approximately speaking, the WD of a real radar signal contains three auto-terms due to
the Braggs and the target, three cross-terms due to the interactions between the Braggs
themselves and the Braggs and the target, and the interactions of the Braggs and the
target with the noise. In the vicinity of the auto-term due to the target, the contribution
of the other terms are noise-like with amplitudes larger than that of the target’s
auto-term, thereby obscuring the target.

The target’s auto-term can be made clearly visible as a line by smoothing the WD. This
smoothing can be realized as a two-dimensional convolution operation. The problem is
to choose an appropriate convolution kernel function. In the following sub-section, we
present the heuristics of the derivation of a smoothing kernel that was successfully used
on the real radar data.

The smoothed WD shows the target as a distinct line that can be detected via a generic
line detection method. We propose taking slices at fixed times and doing a peak
detection first. Once the target has been detected and a coarse estimation of its velocity
made on at least two time slices, the results can be used to obtain the initial velocity and
acceleration parameters of the target. The scope of this study was limited to finding an
appropriate smoothing kernel. The software developed provides a good testbed for
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20

further experimentation with different choices of kernel functions.

In the case of a Line-of-Sight (LOS) radar used over land, the clutter is due to
reflections from the surface of the earth. This clutter can be adequately modeled for our
purposes by a stationary target. The general principles outlined in this report for
HFSWR can also be applied for an HFLOS (High Frequency Line-of-Sight) radar.

Heuristics of the Derivation of the Smoothing Kernal

To choose an appropriate kernel function we use our knowledge of the auto- and
cross-ambiguity functions of chirp signals as described in the previous section and the
fact that the ambiguity function is the two-dimensional Fourier transform of the WD,
Since convolution of the WD with a kernel function is equivalent to multiplication of
the AF by the two-dimensional Fourier transform of the kernel function, we can choose
an appropriate kernel by studying the auto- and cross-ambiguity functions of chirp
signals [8].

We start by making some observations on auto- and cross-ambiguity functions of chirp
signals. Recall that the AF is a function of the variables time-offset and
frequency-offset. In the following, when we refer to the slope and intersect of a line we
associate time-offset with x-axis and normalized frequency-offset with y-axis.

e The auto-ambiguity function of a chirp signal is concentrated along a line through
the origin, with slope = -0.5 x normalized acceleration.

¢ The cross-ambiguity function of two chirp signals with the same acceleration is
concentrated along the line with intercept = -0.5 x difference in the normalized
initial velocities, slope = -0.5 x normalized acceleration.

® The cross-ambiguity function of two chirp signals with differing accelerations is
spread about the line with intercept = -0.5 x difference in the normalized median
velocities, slope = -0.5 x average of the normalized accelerations. The spread is
symmetric in the frequency offset dimension about the above line. For small
enough difference in the acceleration, the cross-ambiguity function is concentrated
along the above line. For large difference in the acceleration, the cross ambiguity
function gets smeared in the frequency offset dimension much like the Fourier
power spectrum of an accelerating target gets smeared when the acceleration is
large.

Based on the above we can make the following observations on the AF of an HFSWR
signal containing Braggs and one target:

e For targets with (magnitude) acceleration less than
Bragg velocity/ NumPulsesPerCPI, the regions where the cross-terms between the
Braggs are concentrated will not overlap with the region where the target’s
auto-term is concentrated.
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e For targets with (magnitude) median velocity greater than 3 x Bragg velocity, the
regions where the cross-terms between the Braggs and the target are concentrated
will not overlap with the region where the target’s auto-term is concentrated.

Therefore, for targets satisfying the above conditions on the acceleration and the
median velocity, we can suppress all cross-terms while preserving the target’s auto-term
simply by setting the value of the AF to zero over the region

frequency-offset > Bragg velocity -
0.5% Bragg cross term region’s width in the frequency-offset dimension.

After suppressing the cross-terms on the AF, we can take the two-dimensional Fourier
transform to obtain a smoothed WD. A more detailed description and discussion of
different methods are given in [8].

Analysis of Real Radar Data

Real HF radar data was analysed using the Fourier transform method and the type-IIl
Wigner distribution method. The data had been collected by a Pulse Doppler High
Frequency Surface Wave Radar that uses a 10-element linear receiving antenna array.
The data had been collected during the known presence of a target. The radar carrier
frequency is 5.672 MHz and the pulse repetition frequency is 9.17762 Hz. There are
ten trails and each trial corresponds to a block of 256 pulses. The detailed description
of the radar is given by Chan [9,10].

The results of our analysis are presented in Figures 1-20. The results for the type-III
Wigner distribution of the time series containing the aircraft are compared
simultaneously with the Fourier transform of the aircraft signal. The results show that
whenever the target was detectable by the Fourier method, that is in trials 3, 4 and 8, the
target was detectable also by the smoothed type-III Wigner distribution method. For the
trials 3, 4 and 8, the aircraft is moving with a constant radial velocity. In the other trials,
that is in trails 1, 2 and 5, the target was not detectable by the Fourier method but the

target was detectable by the smoothed type-III Wigner distribution method to varying

degrees of success. For the trials 1, 2 and 5, the aircraft is moving with a constant radial
acceleration. Trails 1, 2 and 5 show that there are limitations and shortcomings to the
Fourier transform method to detect accelerating targets because of the phenomenon
known as Doppler smearing. On the other hand, the time-frequency analysis has the
capability to detect the target, since its resolution abilities are not reduced in the
presence of a Doppler signature.

An important contribution of the present work is the use of the type-IIl WD rather than
the type-1 WD which has been used by many other researchers. When the type-1 WD is
used, the range of unambiguously measurable normalized velocities is 7. Moreover,
targets that are 7 radians away from the clutter region in the spectral domain will get
masked by the clutter and cannot be detected. The type-IIl WD helps us to overcome
these problems. When the type-IIT WD is used, the range of unambiguously measurable
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normalized velocities is 27, and target that are 7 radians away from the clutter region
can be detected.
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Fourier spectrum of the NoisySignal, Trial = 1

Ammmece g

L

r==-

[ | ISR, K.
'
'
'
1
'
'
e S e B

qeeme=a

-80

-4

Normalized Frequency (radians)

Figure 1: The Fourier transform of the aircraft signal.
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Figure 2: The type-Ill Wigner distribution of the time series containing the aircrafi.

23

DREO TR 2002-033




=2

Fourier spectrum of the NoisySignal, Trial
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Figure 3: The Fourier transform of the aircraft signal.
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Figure 4: The type-Ill Wigner distribution of the time series containing the aircraft.
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Fourier spectrum of the NoisySignal, Trial
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Figure 5: The Fourier transform of the aircraft signal.
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Figure 6: The type-Ill Wigner distribution of the time series containing the aircraft.
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Fourier spectrum of the NoisySignal, Trial
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Figure 13: The Fourier transform of the aircraft signal.
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Conclusion

This report examined the possibility of improving detection of low-altitude aircraft
using High Frequency Surface Wave Radar. Because we are dealing with high speeds
and accelerations, the time-frequency analysis has the capability to improve the
detection, since its resolution abilities are not reduced in the presence of a spread
Doppler signature.

The method involved use of the Wigner distribution, together with a ambiguity function.
The results demonstrated superior performance for all cases considered. Although
Wigner distribution has for a long time been known to possess interesting properties, its
success in solving actual signal analysis problems has been limited. The Wigner
distribution has been generally used as a signal interpretation tool only. The study has
employed the Wigner distribution for solving a particularly challenging problem,
demonstrating that use of time-frequency analysis can improve detection performance.

The results show that whenever the target was detectable by the Fourier transform
method, the target was detectable also by the smoothed type-III Wigner distribution
method. In the other trials the target was not detectable by the Fourier transform
method but the target was detectable by the smoothed type-IIl Wigner distribution
method to varying degrees of success.

Another important contribution of the present work is the use of the type-IIT Wigner
distribution rather than the type-I Wigner distribution which has been used by many
other researchers. When the type-I Wigner distribution is used, the range of
unambiguously measurable normalized velocities is 7. Moreover, targets that are
radians away from the clutter region in the spectral domain will get masked by the
clutter and cannot be detected. The type-III Wigner distribution helps us to overcome
these problems. When the type-IIIl Wigner distribution is used, the range of
unambiguously measurable normalized velocities is 27, and target that are  radians
away from the clutter region can be detected.
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Annex A
The Wigner Distributions of a Discrete-Time Chirp
Signal

A1

34

In this appendix we derive the type-I, type-II, and type-IIl Wigner distributions for the
discrete-time chirp signal

O’ if0 < < (N —1)
Al = rwise.
(A1) §(n) { 0 otherwise.

Type-l Wigner Distribution
Recall that the type-I Wigner distribution W/ (n, 8) is defined as

(A2) Wi(n,0) =" s(n+k)s*(n — k)e 32,
k

where n is integer-valued and @ is real-valued.

It is easy to see that the signal product term s(n + k)s*(n — k) is zero outside the
ranges 0 < n < (N —1) and ~ min(n, N — 1 —n) < k < min(n, N — 1 — n). Thus
W/ (n,0) =0outside 0 < n < (N —1).

Denote

n ifn < (N -1)/2,

I =min(n,N-1-n)={ (N —1)/2 if Nisoddandn = (N —1)/2,
N-1-n ifn>(N-1)/2

(A3)

In terms of this, for 0 <n < (N - 1),

1
(Ad) W(n,0)= Y Orlnthir3ba(nth)) o=ilbr(n—k)+{baln—k))g=s2%0

k=-1
1
(A.S) = Z ej(b12k+-’5bg4nk)e_j2ko’
k=-1
l
(A6) = Z e—j(o—(bl+b2n))2k,
k=—1
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A.2

which is a sum of a geometric series that can be easily evaluated.

We first observe that the sum can be written as

!
(A7) Z eJok

k=—l1

where @ = 2(6 — (b + bon)) and then evaluate it to be

z’: e [ 2¥1  ifa=0modam,
(A8) € = sin[a(i41) )
k=1 f,,Ln@-)Ll otherwise.

Thus, for0 <n < (N —1),

W(n, 6) 2min(n,N—-1—-n)+1 if 8 = by + ban mod T,
nov)= in[(§—(b1+b2n)}(2min(n, N—1-n)+1)| :

s e sinTO— (bTrb;)] i otherwise.

(A9)

Type-ll Wigner Distribution
Recall that the type-II Wigner distribution W7 (n, ) is defined as

(A.10) W(n,0) =Y s(n+k+1)s"(n— k)ed(2k+18,
k

where n is integer-valued and 4 is real-valued.

It is easy to see that the signal product term s(n + k + 1)s*(n — k) zero outside the
ranges 0 < n < (N —2) and —min(n + 1, N — 1 — n) < k < min(n, N —2 —n).
Thus W (n,0) = 0 outside 0 < n < (N — 2).

Denote

n ifn< (N-2)/2,

| =min(n, N—2-n)={ (N —2)/2 if Nisevenandn= (N —2)/2,
N-2-n ifn>({N—-2)/2

(A.11)

In terms of this, for0 < n < (N —2),
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l

Wfl(n, 0) = Z ei(ln(rz+l«-.+1)+%bz(n+k+1)2)e_j(;,1 (ﬂ—k)+'§bz(n—k)2)e—j(2k+1)0’
k=—(1+1)
(A.12)
1
(A.13) = Z ej(bl(2k+1)+%bz(4nk+2n+2k+l))e-j(2k+1)a’
k=—(1+1)
!
(A.14) = Z e—j(o—(bl+-%b2+bzn))(2k+l),
k=—(1+1)
l
(A.15) = g 3O0—(hr+3b2tbon)) Z e—.‘i(g—(b1+%bz+bzn))2k,

k=—(l+1)

which is a scaled version of a sum of a geometric series that can be easily evaluated.

We first observe that the sum can be written as
!
(A.16) > ek,

k=—(1+1)

where a = 2(0 — (b1 + b + byn)) and then evaluate it to be

! . 2042 if @ = 0 mod 2,
(A.17) Do ek =1 s (sin[a(l+1)])
k=—-(l+1) uin(%) -

Now, introducing the scaling factor, we see that

sinfa(l41)]

sin($§)

(A18) €72 i ok _ { e 9%(20+2) ifa =0mod 2,
k=—(1+1)
(20+2) if §$ =0mod 2,
(A.19) ={ —(2+2) if2=7mod 2n,
sinfa(l+1)

sin(%)

Thus, for 0 <n < (N -2),
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A3

2min(n, N —2—n) +2 if 6 = by + 3b2 + byn mod 27,
W (n,0) = —(2min(n,N —2—n) +2) if @ = 7 + by + 3b2 + bon mod 2,
s ’ ain[(ﬂ—(bl +%b2+bgn))(2 min(n,N —2——n)+2ﬂ oth .

sin[8—(b1+1bz-+ban)| erwise.

(A.20)

It is useful to write this as

2min(n+3,N—1—(n+3))+1 if § = by + ba(n + 1) mod 27,
Wiln,g) ={ ~ 2min(n+3,N—1—(n+3)) +1 if @ = 7 + by + ba(n + 1) mod 2m,
s sin[(0— (b1 +b2(n+1))) (2 min(n+3,N-1—(n+3))+1)]

sin[f—(ba+ba(n+1))] otherwise.

(A21)

Type-lll Wigner Distribution
Recall that the type-IIl Wigner distribution W (n, ) is defined in terms of the type-I
and type-II Wigner distributions as

Wil(n/2,0) foreven n,

111 _
(A.22) w, " (n,0) = { W:I((n - 1)/2,0) forodd n.

For nevenand 0 < n < 2(N —1),

2min(2,N-1-%)+1 if § = by + Lbyn mod 7,

Wf”(n, 0) = sin[(o——(b1+%b2n))(2 min(%,N—1—§)+1)1 th .
cin]p— (b1 + 30am)] otherwise.

(A23)
Fornoddand0 < n < 2(N —1),

2min(Z,N—-1-2)+1 if 8 = by + $byn mod 2,
Wii(n6)={ = 2min(%,N-1-%)+1] if § = m + b1 + 3ban mod 2,

sin[(6— (b1 +3b2n)) (2min(3,N-1-2)+1)] otherwise.

sin[0— (21 +%b2n)]
(A24)

Combining the above, for all0 < n < 2(N —1),
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Wy (n,0) =

(A.25)

2min(2
(-1 f:

yN-1-3)+1

2min(2,N —1 -

2)+1]

sin[(0— (b1 +12n)) (2 min(2,N-1-2)41)]

sin[0— (51 +2b21)]

if § = by + bon mod 2,
if0=7r+b1+%b2nmod 2,

otherwise.
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